Sufficient Sample Sizes for Multilevel Modeling
نویسندگان
چکیده
An important problem in multilevel modeling is what constitutes a sufficient sample size for accurate estimation. In multilevel analysis, the major restriction is often the higher-level sample size. In this paper, a simulation study is used to determine the influence of different sample sizes at the group level on the accuracy of the estimates (regression coefficients and variances) and their standard errors. In addition, the influence of other factors, such as the lowest-level sample size and different variance distributions between the levels (different intraclass correlations), is examined. The results show that only a small sample size at level two (meaning a sample of 50 or less) leads to biased estimates of the second-level standard errors. In all of the other simulated conditions the estimates of the regression coefficients, the variance components, and the standard errors are unbiased and accurate.
منابع مشابه
How few countries will do? Comparative survey analysis from a Bayesian perspective
Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much ...
متن کاملRobustness issues in multilevel regression analysis
A multilevel problem concerns a population with a hierarchical structure. A sample from such a population can be described as a multistage sample. First, a sample of higher level units is drawn (e.g. schools or organizations), and next a sample of the sub-units from the available units (e.g. pupils in schools or employees in organizations). In such samples, the individual observations are in ge...
متن کاملMultilevel Regression and Multilevel Structural Equation Modeling
Multilevel modeling in general concerns models for relationships between variables defined at different levels of a hierarchical data set, which is often viewed as a multistage sample from a hierarchically structured population. Common applications are individuals within groups, repeated measures within individuals, longitudinal modeling, and cluster randomized trials. This chapter treats the m...
متن کاملEstimating the Context Effect in a Multilevel Latent Model with Small Sample Sizes: A Monte Carlo Simulation Study
In multilevel modeling, the relationships between the criterion and predictors are investigated at different levels. Often, the cluster-level predictors are measured by aggregating the individual-level measures. However, the aggregated clusterlevel predictors do not always reliably measure the cluster-level regression coefficient, and therefore the context coefficient. This study investigates a...
متن کامل